A Matrix Model Solution of Hirota Equation

نویسنده

  • Vladimir A. Kazakov
چکیده

We present a hermitian matrix chain representation of the general solution of the Hirota bilinear difference equation of three variables. In the large N limit this matrix model provides some explicit particular solutions of continuous differential Hirota equation of three variables. A relation of this representation to the eigenvalues of transfer matrices of 2D quantum integrable models is discussed. 1 written for the proceedings of the NATO Advanced Research Workshop “New Developments in Field Theory”, Zakopane, Poland, June 14-20, 1997 2 Unité Propre du Centre National de la Recherche Scientifique, associée à l’École Normale Supérieure et à l’Université de Paris-Sud

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations

  In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...

متن کامل

Multi-component generalizations of the Hirota-Satsuma coupled KdV equation

In this paper, we consider multi-component generalizations of the Hirota–Satsuma coupled Korteweg–de Vries (KdV) equation. By introducing a Lax pair, we present a matrix generalization of the Hirota–Satsuma coupled KdV equation, which is shown to be reduced to a vector Hirota–Satsuma coupled KdV equation. By using Hirota's bilinear method, we find a few soliton solutions to the vector Hirota–Sa...

متن کامل

On the solving of matrix equation of Sylvester type

A solution of two problems related to the matrix equation of Sylvester type is given. In the first problem, the procedures for linear matrix inequalities are used to construct the solution of this equation. In the second problem, when a matrix is given which is not a solution of this equation, it is required to find such solution of the original equation, which most accurately approximates the ...

متن کامل

Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$

In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...

متن کامل

The least-square bisymmetric solution to a quaternion matrix equation with applications

In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997